Search results for "Formal languages"

showing 10 items of 322 documents

The Average State Complexity of the Star of a Finite Set of Words Is Linear

2008

We prove that, for the uniform distribution over all sets Xof m(that is a fixed integer) non-empty words whose sum of lengths is n, $\mathcal{D}_X$, one of the usual deterministic automata recognizing X*, has on average $\mathcal{O}(n)$ states and that the average state complexity of X*is i¾?(n). We also show that the average time complexity of the computation of the automaton $\mathcal{D}_X$ is $\mathcal{O}(n\log n)$, when the alphabet is of size at least three.

Uniform distribution (continuous)ComputationStar (game theory)0102 computer and information sciences02 engineering and technology[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesCombinatoricsInteger0202 electrical engineering electronic engineering information engineeringTime complexityFinite setMathematicsstar operationDiscrete mathematicsaverage case analysistate complexity16. Peace & justiceBinary logarithm[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]automatonState complexity010201 computation theory & mathematicsfinite language020201 artificial intelligence & image processingComputer Science::Formal Languages and Automata Theory
researchProduct

Nondeterministic operations on finite relational structures

1998

Abstract This article builds on a tutorial introduction to universal algebra for language theory (Courcelle, Theoret. Comput. Sci. 163 (1996) 1–54) and extends it in two directions. First, nondeterministic operations are considered, i.e., operations which give a set of results instead of a single one. Most of their properties concerning recognizability and equational definability carry over from the ordinary case with minor modifications. Second, inductive sets of evaluations are studied in greater detail. It seems that they are handled most naturally in the framework presented here. We consider the analogues of top-down and bottom-up tree transducers. Again, most of their closure propertie…

Discrete mathematicsFinite-state machineGeneral Computer ScienceComputer scienceLogicFormal languages (recognizable and context-free sets transducers)Unbounded nondeterminismMonad (functional programming)Symbolic computationHypergraphsFirst-order logicLogical theoryDecidabilityTheoretical Computer ScienceNondeterministic algorithmAlgebraDeterministic automatonFormal languageUniversal algebraEquivalence relationTree transducersRewritingComputer Science(all)Theoretical Computer Science
researchProduct

One Alternation Can Be More Powerful Than Randomization in Small and Fast Two-Way Finite Automata

2013

We show a family of languages that can be recognized by a family of linear-size alternating one-way finite automata with one alternation but cannot be recognized by any family of polynomial-size bounded-error two-way probabilistic finite automata with the expected runtime bounded by a polynomial. In terms of finite automata complexity theory this means that neither 1Σ2 nor 1Π2 is contained in 2P2.

Discrete mathematicsNested wordDeterministic finite automatonContinuous spatial automatonAutomata theoryQuantum finite automataNondeterministic finite automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesComputer Science::Formal Languages and Automata TheoryMobile automatonMathematics
researchProduct

Alignment-free sequence comparison using absent words

2018

Sequence comparison is a prerequisite to virtually all comparative genomic analyses. It is often realised by sequence alignment techniques, which are computationally expensive. This has led to increased research into alignment-free techniques, which are based on measures referring to the composition of sequences in terms of their constituent patterns. These measures, such as $q$-gram distance, are usually computed in time linear with respect to the length of the sequences. In this paper, we focus on the complementary idea: how two sequences can be efficiently compared based on information that does not occur in the sequences. A word is an {\em absent word} of some sequence if it does not oc…

0301 basic medicineFOS: Computer and information sciencesFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheorySequence alignmentInformation System0102 computer and information sciencesCircular wordAbsent words01 natural sciencesUpper and lower boundsSequence comparisonTheoretical Computer ScienceCombinatorics03 medical and health sciencesComputer Science - Data Structures and AlgorithmsData Structures and Algorithms (cs.DS)Absent wordCircular wordsMathematicsSequenceSettore INF/01 - InformaticaProcess (computing)q-gramComputer Science Applications1707 Computer Vision and Pattern Recognitionq-gramsComposition (combinatorics)Computer Science Applications030104 developmental biologyComputational Theory and MathematicsForbidden words010201 computation theory & mathematicsFocus (optics)Forbidden wordWord (computer architecture)Information SystemsInteger (computer science)
researchProduct

ON-LINE CONSTRUCTION OF A SMALL AUTOMATON FOR A FINITE SET OF WORDS

2012

In this paper we describe a "light" algorithm for the on-line construction of a small automaton recognising a finite set of words. The algorithm runs in linear time. We carried out good experimental results on real dictionaries, on biological sequences and on the sets of suffixes (resp. factors) of a set of words that shows how our automaton is near to the minimal one. For the suffixes of a text, we propose a modified construction that leads to an even smaller automaton. We moreover construct linear algorithms for the insertion and deletion of a word in a finite set, directly from the constructed automaton.

minimal automata[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Timed automatondeterministic automataBüchi automaton0102 computer and information sciences02 engineering and technology01 natural sciencesDeterministic automaton0202 electrical engineering electronic engineering information engineeringComputer Science (miscellaneous)Two-way deterministic finite automatonNondeterministic finite automatonMathematicsonline construction.Discrete mathematicsSettore INF/01 - InformaticaPowerset constructionPushdown automatonComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)010201 computation theory & mathematicsProbabilistic automaton020201 artificial intelligence & image processingFinite set of wordAlgorithmComputer Science::Formal Languages and Automata Theory
researchProduct

THE CONE OF EXPERIENCE IN TEACHING MATHEMATICS SYNCHRONOUSLY AND ASYNCHRONOUSLY

2021

Teaching online is a new challenge for every single teacher. Mathematics in particular remains the school subject that requires special teaching tools. This article describes Edgar Dale’s «Cone of experience» and Bruner’s learning approaches for synchronous and asynchronous teaching in Mathematics. It also describes the most important tools that can be used for online teaching in a combination of both formats, asynchronous and synchronous. These teaching methods are described not only in terms of digital tools, but also in terms of Jerome Bruner’s theories on information processing.

ComputingMilieux_COMPUTERSANDEDUCATIONGeometryCone (formal languages)MathematicsInterConf
researchProduct

Automata and forbidden words

1998

Abstract Let L ( M ) be the (factorial) language avoiding a given anti-factorial language M . We design an automaton accepting L ( M ) and built from the language M . The construction is effective if M is finite. If M is the set of minimal forbidden words of a single word ν, the automaton turns out to be the factor automaton of ν (the minimal automaton accepting the set of factors of ν). We also give an algorithm that builds the trie of M from the factor automaton of a single word. It yields a nontrivial upper bound on the number of minimal forbidden words of a word.

TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Büchi automaton0102 computer and information sciences02 engineering and technologyω-automaton01 natural sciencesTheoretical Computer ScienceCombinatoricsDeterministic automaton0202 electrical engineering electronic engineering information engineeringTwo-way deterministic finite automatonNondeterministic finite automatonMathematicsPowerset constructionLevenshtein automaton020206 networking & telecommunicationsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Nonlinear Sciences::Cellular Automata and Lattice GasesComputer Science ApplicationsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES010201 computation theory & mathematicsSignal ProcessingProbabilistic automatonComputer Science::Programming LanguagesComputer Science::Formal Languages and Automata TheoryInformation Systems
researchProduct

Reduction of UML Class Diagrams

2002

One and the same “real world” can be modeled by different UML class diagrams, which in such a case can be considered “intuitively equivalent”. A formalization of this “intuitive equivalence” of class diagrams is proposed. An algorithm is constructed that for two class diagrams determines if they model the same “real world”. This algorithm can be used in CASE tools to compare alternative models of a system, and for diagram “compression” to facilitate understanding of large diagrams.

UML toolTheoretical computer scienceComputer scienceCommunication diagramComputerApplications_COMPUTERSINOTHERSYSTEMScomputer.software_genreUnified Modeling LanguageSystems Modeling LanguageClass diagramEquivalence (formal languages)Computer-aided software engineeringcomputerComputer Science::Databasescomputer.programming_language
researchProduct

Two-way automata with multiplicity

2005

We introduce the notion of two-way automata with multiplicity in a semiring. Our main result is the extension of Rabin, Scott and Shepherdson's Theorem to this more general case. We in fact show that it holds in the case of automata with multiplicity in a commutative semiring, provided that an additional condition is satisfied. We prove that this condition is also necessary in a particular case. An application is given to zig-zag codes using special two-way automata.

Pure mathematicsFinite-state machineRegular languageLocal configurationCommutative semiringMultiplicity (mathematics)Computer Science::Formal Languages and Automata TheorySemiringAutomatonMathematics
researchProduct

Algebraic Results on Quantum Automata

2004

We use tools from the algebraic theory of automata to investigate the class of languages recognized by two models of Quantum Finite Automata (QFA): Brodsky and Pippenger’s end-decisive model, and a new QFA model whose definition is motivated by implementations of quantum computers using nucleo-magnetic resonance (NMR). In particular, we are interested in the new model since nucleo-magnetic resonance was used to construct the most powerful physical quantum machine to date. We give a complete characterization of the languages recognized by the new model and by Boolean combinations of the Brodsky-Pippenger model. Our results show a striking similarity in the class of languages recognized by th…

AlgebraSurface (mathematics)Class (set theory)Pure mathematicsAlgebraic theoryQuantum machineQuantum finite automataAlgebraic numberComputer Science::Formal Languages and Automata TheoryQuantum computerMathematicsAutomaton
researchProduct